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AbstracL We simulate thermal quenches on a Wodimensional hard mre model with 
symmetry breaking phase transition. By dividing large configurations into many mall 
sub-squares lack of self-averaging is avoided and slatislics are improved. Dynamic scaling 
Is observed during more than WO decades. 

1. Introduction 

The transformation kinetics of crystals thermally quenched helow a phase transition 
temperature is an object of study of great importance in materials science. We are 
particularly interested in the specific case where: 

(1) The system is quenched from a high-temperature disordered phase into a 
low-temperature ordered phase. 

(2) The ordered phases are degenerate: the phase transition involves a 
spontaneous symmetry breaking. 

(3) The order parameter is non-conserved: there are no conservation laws which 
can slow down the phase transformation kinetics. 

The subject has been studied extensively in the literature (see e.g. [l] and the 
references quoted therein). In the case of a second-order transition the behaviour 
of the system can be summarized as follows. Immediately after the quench ordering 
sets in. On a larger time-scale the crystal is filled with ordered domains separated 
hy anti-phase boundaries. The ordering proceeds by domain coarsening, i.e. by the 
motion of the boundaries. 

If the final temperature is close to the critical temperature (i.e. a shallow quench) 
then the evolution of the local order parameter competes with the motion of domain 
boundaries on the Same time scale. In this regime non-classical critical behaviour can 
he observed. 

The current paper discusses a model which is well suited to study this kind of 
thermal quench. It is a hard-core model with a phase transition of the percolation 
type. No energy is gained by the formation of compact domains. As a consequence 
the domain growth is retarded. The evolution of the order parameter can he followed 
over many decades. 
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The next section discusses scaling relations. The model is introduced in section 3. 
Numerical simulation techniques are discussed in section 4. The results follow in 
section 5 and conclusions are given in section 6. 

2. Sealing laws 

Allen and Cahn [2] argued that the total surface S(1) of domain boundaries shrinks 
as l/& in agreement with experimental observation in binary alloys. S(1) is 
proportional to the residual energy A E ( 1 )  which is the excess internal energy of 
the quenched phase compared to the ordered phase. The latter quantity is much 
easier to follow in numerical experiments. It seems to be generally accepted in 
literature (see e.g. [3-71) that 

with y = 2. 
For quenches into the critical region slight deviations from y = 2 should occur. 

In the theory of Allen and Cahn it is assumed that the order parameter has reached 
the equilibrium value. In the critical region local order is never reached because of 
critical slowing down [SI. Hence the basic assumption of ordered domains separated 
by domain walls is not satisfied. 

The scaling theory of Milchev et a1 [l] predicts that in the critical region (1) 
should hold with 

where a is the exponent of the specific heat: C ,  - (T-  T,)-", U is the exponent of 
the correlation length: [ - (T-T,)-" and z is the dynamical exponent 181: - t ' / " .  
The latter is given by (model A of [SI) 

z = 2 + c q  (3) 

where q is the exponent of decay of the spatial correlation function g ( r )  at criticality: 
g ( r )  - v2-d-q , and c is a numerical constant depending on the dimension d. Use 
of the mean field values v = 1/2, a = 0, and q = 0, gives z = 2 and y = 1, in 
contradiction with the classical result y = 2 (the Allen and Cahn prediction is not a 
mean field result). 

The model studied in the current paper belongs to the universality class of the 
d = 2 ferromagnetic Ising model with Glauber dynamics. On basis of numerical work 
and renormalization group results one expects a value of the dynamical exponent z 
close to 2 (most quoted values [9] are in the range 2 < z < 2.2; recently [17-191 a 
much larger value of z between (2.24) and (2.33) has been proposed). Combining 
the exact exponents a = 0 and v = 1 with (2) gives y = z.  

Sadiq and Binder [3] report results for a d = 2 spin model with nearest and next 
to nearest neighbour interactions, belonging to a different universality class. They 
obtain a value y E 2.1 (l/y = 0.48) at temperatures well below critical, and values 
varying between 2.5 and 3.0 for quenches into the critical region. These results have 
been confirmed in [lo]. The estimated exponent values v IT 0.87, a IT 0.26, and 
z 2 2.4, yield y 2.85 which should be valid in the critical region. 
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In View of these results one can expect that y Y 2 is generally valid for quenches 
with final temperature outside the critical region (but not too low in order to avoid 
freezing effects). In the critical region formula (2) should hold. 

Also of interest is the time dependence of the order parameter M ( 1 ) .  Shortly 
after the quench it has a small value because of the symmetry of the high temperature 
phase. Its average over many initial configurations ( M ( 1 ) )  is exactly zero, and remains 
small until ordered domains grow to the size of the system. Hence the interesting 
quantity is the (time-dependent) static susceptibility ~ ( t )  which is the second moment 
of the distribution of M ( 1 )  (up to a constant factor) 

k,T x ( 1 )  = k(M*(1)) (4) 

(N is the number of sites of the lattice; for simplicity of notation we assume a scalar 
order parameter). 

The susceptibility and the residual energy should be related by [l] 

~ ( 1 )  -. ( A E ( t ) ) - 7 ' ( ' - e )  (5) 

where y is the exponent of the static susceptibility x - ( T  - Tc)-7 and a is the 
exponent of the specific heat. During the 
quench the only thermodynamic parameter which evolves in time is the (internal) 
energy. One can associate an effective temperature T with the actual internal energy 
of the system. Then (5) states that the observed static susceptibility is nothing but 
the value corresponding to the effective temperature of the system. 

The relation is explained as follows. 

3. The model 

The model described below has been used in 1111 to study domain growth kinetics in 
crystals where degenerate low-temperature phases repel each other strongly due to 
steric hindrance effects. The model is of interest because of its simplicity. It is well 
suited for the study of domain growth because it contains infinite repulsion terms 
which slow down the phase transformation kinetics. 

At each site i of the square lattice a spin variable U, takes one of three possible 
values: U; = -1, 0, or 1. Only two types of interactions are present: 

(a) A chemical potential g favours the U = +1 states. 
@) An infinite repulsion forbids U; = 1 and uj = -1 on neighbouring sites 

The same model but with an additional attraction between non-zero equal spins 
on neighbouring sites has been studied in [I. A slightly modified model is exactly 
solvable [U] on the triangular lattice. 

The model can be seen as a special case of the Blume-Emery-Griffiths (BEG) 
model Hamiltonian [12-141 

(li - j l  = 1). 

with J -+ +m, li = - J ,  and D = -p .  The existence of a phase transition in the 
present model has been proved in [20] (see also [Zl]). The li = -J  case of the 
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BEG model has been studied in [14]. From the latter work one can conclude that the 
present model has a second order phase transition as a function of temperature. 

The relevant parameter of the model is the activity X = exp( - p / k B T ) .  At high 
activity the U = +1 and -1 values have the same occurrence on average. Below the 
critical value A, rz 0.55 symmetry breaking occurs with order parameter ( U )  # 0 (see 
the appendix). 

4. Numerical techniques 

Let N denote the number of sites. During one elementary Monte Carlo step (MCS) 
N sites are selected and changed according to the following prescription: 

(1) A site i and a new spin value U (= 0, 1, or -1) are selected at random. 
(2) If the selected spin ui and the new value U are either both zero or both 

non-zero then no change takes place. 
(3) If the selected spin ui is non-zero and the new value U is zero then ui is set 

to zero with probability A. 
(4) If the selected spin ui is zero and the new spin value U is non-zero then ui 

obtains the value U except when this would lead to opposite values +1 and -1 on 
neighbouring sites. 

The simulations can be speeded up by use of the following algorithm: 
(1) A site i is selected at random. 
(2) If ui # 0 then ui is cleared to zero with probability X/2. 
(3) If ui = 0 then a new value U = +1 is choosen at random, and oi is put equal 

to U, except when this would lcad to a conflict with thc spin valuc on ncighbouring 
sites. 

It is easy to see that three updates by the former algorithm are equivalent with 
two updates by the latter. The times mentioned in the current paper refer to the 
faster of the two algorithms. 

During the simulations we monitor the density p ( t )  = N - ’  xi U: of non-zero 
spins (N is the number of sites of the configuration) and the probability distribution 
P L ( M ( t ) )  of the total magnetization M ( t )  = xi c, of configurations of size L x L.  
The residual energy A E ( 1 )  is related to the density p ( t )  by 

The probability distribution P , ( M ( t ) )  has been established by measuring the total 
magnetization M of all sub-squares of sizes 32 x 32, 64 x 64 and 128 x 128 within large 
systems consisting of 1024 x 1024 lattice sites (using periodic boundary conditions on 
the large system). We can expect that in this way the boundary effects are heavily 
reduced while at the same time very good statistics result from the large number Of 
small sub-squares. Our data shows that at least L sub-squares of size L x  L are needed 
to obtain acceptable results, hence we limit ourselves to sub-squares of size L < 128. 
A similar increase of fluctuations with increasing size of the configuration has been 
reported in [3]. It has been called [I] ‘lack of self-averaging’. From PL( M ( t ) )  We 
calculate the average magnetization mL( t )  and the static susceptibility x L ( t ) .  

AE(t) = p N ( p ( m )  - d t ) ) .  (7) 

5. Simulation results 

The simulations reported here are done for X = 0.50. The initial configuration has 
all spin variables ui equal to zero. . 
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The timedependent density ~ ( t )  is shown in figure 1. A fit with 

p ( t )  = p ( m )  - At-”Y (8) 

(which follows from (1) and (7)) from 1 = 32 to 1024 MCS (8 to 16 independent 
simulations) gives p(00)  = 0.603(2) and y = 2.08(+0.22,-0.16). The relative RMS 
error of the three-parameter fit is 3 x Note that there are important differences 
between different runs, mainly resulting in a large error (20%) on the amplitude A. 

P 
o,60 1 .................................. 

t 0.55 , , , , , , , , , , , , , , , , , , , , , , , , , , , , 

32 4096 

Flgure 1. Density of non-zero spins as a function of time (logarithmic =le); the line is 
the fitted a w e  discussed in the text. 

The time dependence of xL averaged Over many small configurations is shown 
in figure 2 On a short time scale it increases linearly as expected: starting from 
an initially homogeneous configuration the U = 0 sites are changed randomly into 
U = i 1  sites. Hence the total magnetization M performs a one-dimensional random 
walk In particular the formula 

kBT x(1) = 21 (9) 

should hold on a short time scale. For t << 1 MCS relation (9) is indeed found 
to be satisfied within numerical accuracy. At intermediate times the increase of 
x slows down. The average slope is about 0.8 instead of 1. In this regime the 
spontaneous ordering of the system is hindered by the competition of two types of 
ordered domains. 

In order to clarify the finite size effects, two types of simulation results are 
compared in figure 2 (i) simulations on small systems with periodic boundary 
conditions, and (ii) averages over many sub-squares of large configurations of 1024 x 
1024 sites. It is clear from figure 2 that finite size does effect the simulations for times 
1 > 16 in the 32 x 32-case and t > 256 in the 64 x 64 case. We can understand the 
finite size effect as being due to amplification of the ordering mechanism. Indeed, 
when a small system orders, then, by the periodic boundary conditions it sees the 
neighbouring copies of itself order as well. The influence of the latter will amplify the 
ordering process. On the other hand, an ordering sub-square of a large configuration 
sees neighbouring sub-systems which maybe do not order or have an average order 
parameter of the opposite sign. Hence the ordering of the sub-square is slowed down. 
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In this way one can understand that periodic boundary conditions on a small system 
can amplify the ordering process. 

When comparing different simulation runs, it appears that there is a strong 
correlation between the average value of the susceptibility X , ( t )  and the actual 
value of the density p ( t ) .  For that reason we have studied x, as a function of p. 

The data of X L ( t )  for L = 32, averaged over 1024 sub-squares and 8 to 16 runs, 
and the data of p ( t ) ,  with t varying from 32 to 1024 MCS, have been fitted using the 
formula 

A ( p ( m )  - p ( t ) ) - T / ( ' - " )  (10) 
(derived from (5) using (7)). The result of this three-parameter fit is p(m)  = 
0.612(+0.008,-0.005) and y / ( l  - a) = 1.76(+0.44,-0.29). The relative RMS 
error of the fit is 4 x lo-'. The value obtained for p(m)  deviates slightly from the 
one quoted at the start of the section. 

The data for x , ( t )  with L = 64 or 128 could not be analysed properly. The 
statistics deteriorate because data from fewer sub-squares is available. On the other 
hand, the sampling problem is much worse due to the larger configuration space. 

Initially the probability distribution P , ( M ( t ) )  is Gaussian. As a function of 
time the width of the distribution increases and deviates from the Gaussian shape 
in the vicinity of M = 0. The shape becomes nearly rectangular at 1 = 41% MCS. 
This peculiar time dependence of P , ( M ( t ) )  can best be understood in terms of a 
time-dependent Ginzburg-Landau free energy Ft( M) defined by 

F , ( M )  = -.k,TlogP,(M(t)) (11) 
Initially, F , ( M )  is a narrow parabola whose width increases with time. At the end 
the potential is completely flat near the origin. See figure 3. 

6. Conclusions 

By numerical simulation of thermal quenches we have verified that two predictions of 
the scaling theory of [I], i.e. formulae (1) and (5).  hold to great accnracy in a simple 
d = 2 spin lattice model. In this way two critical exponents could be determined. 
Relation (5) holds with y / ( l  - a) rr 1.76, close to the value 7/4 expected for the 
d = 2 Ising model. Relation (1) holds with y rr 2.08, close to the value y = 2 
predicted by the classical theory of Allen and Cahn. It implies a dynamic exponent 
z = 2.08, in agreement with values reported in the literature (e.g. [16] z = 2.076(5)). 

The results obtained for the static susceptibility x(1) and for the probability 
distribution of the total magnetization M ( t )  indicate that as a function of time the 
system evolves towards criticality. On small systems deviations from scaling behaviour 
set in rather early because of an amplification effect induced by periodic boundary 
conditions. By considering L x L sub-squares of large configurations we could avoid 
such effects due to the boundary conditions. Then the scaling behaviour is observable 
over more than two decades. 

From the probability distribution of the total magnetization M ( t )  a Ginzburg- 
Landau free energy can be calculated. At later times it is a wide potential, nearly 
flat at the origin. There is no evidence for potential minima around non-zero values 
&Mu of the order parameter. This is only expected to be the case at much later 
times. Even at t = 4096 MCS, local order is not established on the length Scale of 32 
lattice sites. 
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Figure 2 Static susceptibility as a Iunction of Figure 3. Free energy as a function of 
time. The average is taken Over 80 independent lragnetization for 32 x 32 sub-squares of a 1024 x 
SimulationS of a 32 x 32 system (z) and mer 100 1024 mnfiguration (I6 independent simulations) at 
independent simulations of a 64 x 64 system (+), limes t = 64 (light) and f = 256 M(S (dark). 
resp. Also shown are the averages Over square 
sub-sets of mnfiguralions with size 1024 x 1024 (I6 
independent Simulations far t 6 256, 8 independent 
simulations tor t = 512, 1024, 1 simulation for 
t = 2048,4096 - lower curves). The full lines 
are the theoretical prediction valid at early t ima. 
The dashed culyes are guides for the eye. The 
results for the different sizes are shifted venieally 
in order la avoid averlap. 
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Appendix 

In order to estimate the value of A, we studied the correlation length ( as a function 
of temperature T. The configurations were initialized either in the ground state 
ui = 1 or in the high temperature state U; = 0. The correlation length was measured 
after a fixed simulation time (t = loo0 MCS). 

In the high temperature phase T > T, the system relaxes exponentially with time 
and the results of simulations with both types of initial conditions coincide within 
numerical precision. At low temperatures T < T, the simulations starting from the 
ground state configuration show rapid relaxation while, due to the symmetry breaking 
problem, the simulations starting from the U = 0 state do not relax to the equilibrium 
phase on the time scale of the numerical experiment. AE a consequence, both types 
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Flprc  Al. lnverse "e la t i on  length ll€ as a function of 

of simulation yield results which disagree with each other. The correlation length is 
particularly sensitive to discriminating the equilibrium and non-equilibrium phases. 
See figure Al. 

Measuring at a later time 1 ,  i.e. after a longer relaxation time, results in a further 
increase of the correlation length in the metastable low temperature phase. 
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